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Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers

Richard P. Sear*
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

~Received 17 June 2002; published 20 November 2002!

A simple analytic theory for mixtures of hard spheres and larger polymers with excluded volume interactions
is developed. The mixture is shown to exhibit extensive immiscibility. For large polymers with strong excluded
volume interactions, the density of monomers at the critical point for demixing decreases as one over the
square root of the length of the polymer, while the density of spheres tends to a constant. This is very different
from the behavior of mixtures of hard spheres and ideal polymers, these mixtures, although even less miscible
than those with polymers with excluded volume interactions, have a much higher polymer density at the critical
point of demixing. The theory applies to the complete range of mixtures of spheres with flexible polymers,
from those with strong excluded volume interactions to ideal polymers.
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I. INTRODUCTION

Athermal mixtures are remarkable because the only
ergy they possess is thermal energy; their behavior includ
their phase behavior is determined solely by entropy. But
does not mean that this phase behavior is uninteresting
tropy alone can drive phase transitions such as freezing
in mixtures, demixing into coexisting fluid phases. This d
mixing is found almost whenever the two components of
mixture are very different, such as the athermal polymer
hard spheres considered here. We look at mixtures of h
spheres and an athermal polymer where the polymer i
large or larger than the spheres: the mean-square end-to
separation of the polymer greater than or equal to the di
eter of the spheres. This complements earlier work on m
tures where the polymer is smaller. As might be expected
find extensive immiscibility between the polymer and t
spheres. We calculate phase boundaries and determine
scaling with the sizes of the components, for example,
density of monomers at the critical point is found to scale
one over the square root of the number of monomers i
polymer, just as does the critical point for demixing of
polymer and a poor solvent.

We are most interested in the limit where the size of
polymer,RE , is much greater than that of the colloid,s. RE
is the root-mean-square end-to-end distance of the poly
and s is the hard-sphere diameter. Our theory is motiva
by the idea that forRE@s the effect of the colloids is a sma
length-scale effect in the sense that if the colloid degree
freedom of the mixture are integrated out we are left w
polymers which at length-scales large in comparison tos
behave qualitatively just like a polymer in structureless s
vent. The colloids effect the quality of this effective stru
tureless solvent but do not introduce any new physics
length-scales large with respect tos. If this is correct then
the long length-scale behavior and the phase behavio
colloid-polymer mixtures may be mapped onto the we
understood long length-scale and phase behavior of a p
mer plus solvent system. The phase separation of poly
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and much smaller colloidal spheres will be qualitative
identical to that of a long polymer and a poor solvent. Th
phase separation has been extensively studied and is
well understood@1–4#. The approximate theory we will de
velop is essentially a Flory-Huggins polymer-plus-solve
free energy with an effective solvent quality which depen
on the concentration of the colloid. It is known that a Flor
Huggins free energy describes rather well the qualitative f
tures of the phase separation of a long polymer and a p
solvent; see the comparison with computer simulation dat
Refs.@2–4#. It is also known that purely entropic effects ca
result in the polymer effectively being in a poor solvent@5#.

The literature on mixtures of colloidal particles and no
adsorbing polymers is extensive because colloid-polym
mixtures are common, and the limit we consider where
interactions are purely repulsive is a rather fundamental li
of these mixtures. Mixtures in which the polymer molecul
are both larger than the particles and flexible~as opposed to
semiflexible! are formed when the particles are small, a fe
nm across. Nanoparticles are colloidal particles of this size
are proteins. Protein-polymer mixtures are common, for
ample, polymers are mixed with proteins in order to indu
the proteins to crystallize@6,7#. Although in practice it is
unlikely that the monomer-protein interaction is ever pure
repulsive over all the surfaces of a protein, however, the li
we study here provides a basis for incorporating the effe
of weak adsorption of the polymer onto a protein molecu
The limit in which all three interactions, sphere-sphe
monomer-monomer, and sphere-monomer, are purely re
sive is an important and fundamental limit. It is fundamen
in the sense that as we are assuming the monomers t
much smaller than the spheres, then the details of
monomer-sphere interaction are irrelevant as long as i
purely repulsive; the details of the monomer-monomer int
action only effect the behavior by altering a single parame
the monomer-monomer second virial coefficient, and a
sharply repulsive sphere-sphere interaction will behave
most like hard spheres. Thus many of the details of the m
ture are irrelevant.

The interactions between colloidal spheres and polym
molecules have been studied theoretically via a numbe
techniques: scaling approaches@8–10#, field theory@11–14#,
©2002 The American Physical Society01-1
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RICHARD P. SEAR PHYSICAL REVIEW E66, 051401 ~2002!
computer simulation@15,16#, integral equations@17,18#, and
other approaches@19–22#. The phase behavior has bee
studied via computer simulation@15#, scaling theory@23#,
and perturbation theory@24,25#, where Refs.@15,24# are for
ideal polymers. Reference@18# is a review of recent work on
colloid-polymer mixtures, focusing mainly on the structu
and on the results of integral equations, but also discus
other approaches and the phase behavior. Earlier work by
author @23# assumed that the phase separation would oc
when the polymer was semidilute. The more careful and b
ter founded work here finds that this is not correct, the ph
separation occurs at the boundary between the dilute
semidilute regimes where the free energy expression
sumed in Ref.@23# is not valid. Therefore in particular th
findings of Ref.@23# for the polymer density where phas
separation occurs are incorrect and should be discoun
The opposite limit to that of interest here, i.e., where
polymer molecules are smaller than the colloidal spheres,
been considered extensively, see Refs.@26–28,15,29# and
references therein. In this limit the polymer~with or without
monomer-monomer excluded volume interactions! induces
crystallization of the spheres, there is no equilibrium sepa
tion into coexisting fluids.

II. MODEL AND PHYSICAL PICTURE

Our colloidal particles are modeled by hard spheres
diameters and our polymers are modeled by flexible cha
of N monomers, each of lengtha. We characterize the inter
action between a pair of monomers of the polymer with
second virial coefficient for this interaction,BM . We start
with a polymer in a good solvent far from the theta tempe
ture whereBM5O(a3) and the polymer behaves as a se
avoiding walk~SAW!. The interaction between a pair of ha
spheres is similarly characterized by its second virial coe
cientBS5(2/3)ps3. The interaction between a sphere and
monomer is taken to be purely repulsive and short rang
monomer cannot overlap with a sphere but otherwise d
not interact with it. The polymers do not adsorb onto t
surface of the spheres. The monomer sizea is much smaller
than the diameter of the spheres, and here we are consid
particles which are smaller than the polymers so our th
length-scales satisfya!s,RE .

A mixture of spheres and polymer is difficult to deal wi
because of the sphere-polymer interaction. Pure hard sph
and pure polymers have both been studied extensively
the equilibrium behavior of both is well understood. T
sphere-polymer interaction is hard to deal with because
the large difference between the size of a sphere and th
a monomer and because of the connectivity of the polym
if the interaction of a sphere and a monomer was indep
dent of the interaction of the sphere with the next monom
along the polymer, then the sphere-polymer interaction co
be estimated easily. However, when the monomers are m
smaller than the sphere this is very far from being true. T
problem of the disparity in sizes can be solved by resca
the monomer size froma to s, i.e., by viewing the polymer
not as being composed ofN monomers of sizea but of nB
monomers of sizes. This rescaling is quite common, see t
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book of de Gennes@1#. It has already been applied to mix
tures of ideal large polymers and spheres@24#, where it was
referred to as the extended Asakura-Oosawa model. We
the rescaled monomers of sizes, blobs. In principle this
rescaling can be done exactly, i.e., it can be done leaving
free energy etc., exact, but here we view it as part o
physically motivated approximation scheme. See Fig. 1 fo
schematic of our sphere-polymer mixture showing the po
mer composed of a chain of blobs of sizes. If there areNB
monomers of sizea in one blob of sizes thennB is related
to N by nB5N/NB . So, relating the number of blobs to th
number of monomers requires estimatingNB , we defer this
to Sec. IV. Until then we specify the polymer size by spe
fying nB and do not concern ourselves with hownB is found
for a given polymer. The approximate free energy we w
obtain depends on the polymer length only throughnB .

Having performed the rescaling we approximate the int
action between a sphere and a polymer as beingnB indepen-
dent sphere-blob interactions. This is quite a reasonable
proximation as the blobs and spheres are of the same
Applying this approximation before rescaling, i.e., appro
mating the sphere-polymer interaction byN sphere-monomer
interaction is qualitatively wrong because the monomers
so much smaller than the sphere so the sphere interacts
many monomers at a time. We rescaled the monomers jus
we could apply this simplifying approximation. The blob
blob and sphere-blob interactions are characterized by t
second virial coefficients,BB andBSB, respectively. The sec
ond virial coefficient for the interaction between a sphere a
a blob is of order that for the interaction between two ha
spheres of diameters but is a little smaller. We defer its
estimation to Sec. IV. Returning to our assumption that
interaction between a polymer and a sphere consists onB
independent blob-sphere interactions, this implies that
second virial coefficient for the sphere-polymer interactio
is nBBSB. Finally, we remark that after rescaling, our mix

FIG. 1. A schematic of our mixture of large polymer molecul
and colloidal spheres. The black disks represent the colloids and
curve represents a polymer coil. The rescaled monomers use
estimate the polymer-colloid interaction are drawn as das
circles.
1-2
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FLORY-HUGGINS THEORY FOR ATHERMAL MIXTURES . . . PHYSICAL REVIEW E 66, 051401 ~2002!
ture of polymers of blobs and spheres resembles the athe
polymer1 solvent mixture considered by Frenkel and Lou
@5#. The phase separation in both cases is driven by unfa
able excluded volume interactions.

III. FLORY-HUGGINS-TYPE THEORY

We start with the basic Flory-Huggins theory for a pol
mer of monomers which interact only via excluded volum
interactions, see, for example, the book of de Gennes, p
113–115. This is often referred to as an athermal polym
solution. For our ‘‘monomers’’ we take the blobs not th
original monomers of lengtha. Thus the ‘‘monomer’’ density
in the theory is actually the density of blobs which is equa
rPnB ; rP is the number density of polymer molecules. A
usual we use a reduced ‘‘monomer’’ density,f, which we
obtain by multiplying the blob number density by the volum
one blob excludes to another, 2BB , f5rPnB(2BB). The
Flory-Huggins Helmholtz free energyF then has the usua
form

F~2BB!

V
5 f 5

f

nB
ln f1~12f!ln~12f!, ~1!

which defines the reduced Helmholtz free energy per u
volume f. Throughout, we use units such that the therm
energykT51. This is for a polymer solution, no colloida
spheres present. We add on the contribution of the collo
spheres using a virial expansion,

f 5
f

nB
ln f1~12f!ln~12f!

1~2BB!$rC@ ln rC21#1rC
2 BS1rCrPnBBSB%, ~2!

where we have truncated the expansion after the sec
virial coefficient terms. We have dropped cubic and high
order terms, which is only valid at low colloid densities. T
last term within the braces is the second virial coefficie
term for the polymer-sphere interaction: within our appro
mation it is justnB independent sphere-blob excluded vo
ume interactions, each with an excluded volumeBSB. In
order to obtain a simple analytic theory we will neglect n
only all terms for the sphere-polymer interaction beyond
leading order, second virial coefficient term, but all the ter
from sphere-sphere interactions, including the leading or
rC

2 BS term shown in Eq.~2!. This latter approximation is
quite severe but we do this in the expectation that the sph
sphere interactions will not be very large when the colloi
spheres and polymer demix and that the sphere-sphere i
actions, unlike the blob-blob interactions, are not essentia
understanding the basic physics of this demixing.

Making these two approximations and defining a redu
density of spheresfC5rC(2BB), Eq. ~2! becomes

f 5
f

nB
ln f1~12f!ln~12f!1fC@ ln fC21#1fCfb,

~3!
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where we have changed the lnrC term to the lnfC term
which we can do as the difference between the two i
constant, ln(2BB), which has no effect on the phase behavi
The quantityb is the ratio between the excluded volumes
the sphere-blob and blob-blob interactions,b5BSB/(2BB).

Apart from a somewhat more complex dependence onf,
Eq. ~2! is of the same form as the free energy of Eq.~1! of
Ref. @30#. Although in that work the mixture was of a mix
ture of thick and thin hard rods and the free energy w
exact. Below, we will transform Eq.~3! following the same
approach as used in Ref.@30#. The free energy Eq.~3! is
linear in the density of spheres,fC . This makes it easy to
analytically transform from fixedrP andrC to fixed rP and
mC , where mC is the chemical potential of the colloida
spheres. This transformation is useful as then we have a
modynamic potential, called the semigrand potential, wh
depends on one density variable,rP or f, and on one field
variable,mC . This is completely analogous to the Helmhol
free energy of a single component system in which tempe
ture is important; that free energy also depends on a den
variable~the number density! and a field variable~the tem-
perature!. As such once we have the semigrand potential c
culating phase equilibria is just as easy as for a single c
ponent system.

So, at fixedf andmC the relevant thermodynamic func
tion is the semigrand potentialV. In fact it is slightly more
convenient to work with the activity of the colloidzC
5exp(mC), not the chemical potential. We need the sem
grand potentialV which is a Legendre transform of th
Helmholtz free energy

V~2BB!

V
5v5 f 2fCmC , ~4!

which defines the reduced semigrand potential per unit v
ume v @31#. The chemical potentialmC is just thefC de-
rivative of f, so, taking this derivative of Eq.~3!,

mC5 ln fC1fb5 ln zC , ~5!

which can be rearranged to obtain an equation forfC in
terms ofzC

fC5zC exp~2fb!. ~6!

Using Eq.~3! to substitute forf and Eq.~5! to substitute for
mC , in Eq. ~4!,

v5
f

nB
ln f1~12f!ln~12f!2fC , ~7!

but we want it in terms of the relevant variables which aref
andmC so we use Eq.~6! to substitute forfC

v5
f

nB
ln f1~12f!ln~12f!2zC exp~2fb!. ~8!

This equation completely describes the thermodynamics
the mixture.
1-3
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RICHARD P. SEAR PHYSICAL REVIEW E66, 051401 ~2002!
A. The critical point

We begin the determination of the phase behavior by fi
ing the critical point for demixing. First we need the chem
cal potentialm of the polymer, which is just thef derivative
of Eq. ~8!,

m5
ln f

nB
1nB

21212 ln~12f!1zCb exp~2fb!. ~9!

Now, the critical point is the point where the first and seco
f derivatives of the chemical potential are equal to zero. T
derivatives are

]m

]f
5

1

nBf
1

1

12f
2zCb2 exp~2fb!, ~10!

]2m

]f2
52

1

nBf2
1

1

~12f!2
1zCb3 exp~2fb!. ~11!

Setting them to zero results in two simultaneous equati
for the polymer blob densityfcp and the sphere activityzC

cp

at the critical point. Note that we could have obtained
critical point directly from the Helmholtz free energy Eq.~3!
but transforming to the semigrand potentialv is rather sim-
pler as then we only have one density variable. In contr
the Helmholtz free energy depends on two density variab
and so determining the critical point from it requires analy
ing determinants. Both routes yield the same critical poin
Eqs.~3! and~8! are exact Legendre transforms of each ot
and so yield identical behavior. Combining these two eq
tions yields an equation solely in terms offcp,

2~12fcp!21nB~fcp!21bfcp~12fcp!2

1bnB~fcp!2~12fcp!50, ~12!

and also one forzC
cp

zC
cp5b22F 1

nBfcp
1

1

12fcpGexp~fcpb!. ~13!

Equation~12! may be solved numerically forfcp and then
zC

cp obtained from Eq.~13!.
For largenB the equations simplify and we can solve t

equations explicitly. For largenB we look for a solution with
fcp small. Equations~12! and ~13! then yield

fcp5
nB

21/2

A~11b!
, zC

cp5
1

b2
~11nB

21/22A11b!, nB@1.

~14!

For large polymers,nB@1, at the critical point the density o
polymer blobs scales asnB

21/2 while the sphere activity tend
to a constant asnB increases. The reduced density of sphe
fC tends tob22 for nB large, from Eqs.~6! and ~14!.
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In order to estimate the magnitude of the sphere-sph
interactions we require the volume fractionh of the spheres,
h5rC(p/6)s35rC(BSB/8). At the critical point the volume
fraction of the spheres is

hcp5
1

8b S 11nB
21/2 21b

A11b
D nB@1. ~15!

For large polymers the volume fractionh of spheres at the
critical point is close to 1/8b. For our neglect of the sphere
sphere interactions to be validh must be small. We estimat
b in the next section and find it to be generally around 4
larger, so the volume fraction of spheres at the critical po
is roughly 0.03 or less and our neglect of sphere-sphere
teractions is not unreasonable. Having defined the volu
fraction of spheres we can also define an effective volu
fraction of the blobs. If we regard each blob as filling
spherical volume of diameters then the ‘‘volume fraction’’
of blobs equalsf(b/8) and so at the critical point we have
blob volume fraction at the critical point

hB
cp5

nB
21/2b

8A~11b!
nB@1. ~16!

In order to illustrate the trends in the demixing behav
with polymer length, measured bynB , we have calculated
@using Eqs.~12! and ~13!# the volume fractions of sphere
and of blobs at the critical demixing point,hcp and hB

cp ,
respectively. The results are shown in Fig. 2 where the s
curve is the volume fraction of blobs, and the long-dash
curve is the sphere volume fraction. For largenB , we see
that while the sphere volume fraction is tending towards
plateau, that of the polymer blobs is continuing to decrea
which is just what we expect from Eqs.~15! and ~16!. For
the calculations we have setb53.9 which is approximately
its value in thea/s→0, BM5” 0 limit. We will discuss the

FIG. 2. The variation of the volume fractions of polymer blo
and colloidal spheres at the critical demixing point, as a function
polymer lengthnB . The solid and long-dashed curves are for po
mer in a good solvent,b53.9; the solid curve is the volume frac
tion of polymer blobs,hB

cp , and the long-dashed curve is that of th
spheres,hcp. The dotted and dot-dashed curves are for a polyme
a quite poor solvent,b520; the dotted curve ishB

cp and the dot-
dashed curve ishcp.
1-4
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FLORY-HUGGINS THEORY FOR ATHERMAL MIXTURES . . . PHYSICAL REVIEW E 66, 051401 ~2002!
estimation ofb and its variation with solvent quality in Sec
IV. The phase diagram in the plane of the volume fractions
colloidal spheres and blobs, for spheres and polymers w
nB55 blobs, is plotted in Fig. 3. Note the large region
fluid-fluid coexistence.

B. Virial expansion

We can expand out our semigrand potential Eq.~8! as a
virial or density expansion,

v5
f

nB
ln f2zC2f1zbf1

1

2
~12zCb2!f2

1
1

6
~11zCb3!f31

1

12S 12
1

2
zCb4Df41•••.

~17!

So, the secondB2 and third B3 virial coefficients for the
monomer-monomer interactions in the presence of the
loidal spheres are

B25
1

2
~12zCb2!~2BB!, B35

1

6
~11zCb3!~2BB!2.

~18!

Using Eq.~14! for the activity of spheres at the critical poin
in the above equation for the virial coefficients, we find th
the critical point occurs when the second virial coefficient
the expansions is negative and small, of orderBBnB

21/2

;s3nB
21/2, whennB is large. This holds forBB of orders3

which is correct when the excluded volume interactio
within a blob are strong, see the next section for a discus
of this point. The third virial coefficient is of orders6 at the
critical point, again assuming the intrablob excluded volu
interactions are strong. This is just as in the standard Flo
Huggins free energy for a polymer in a poor solvent@1#.

FIG. 3. The phase diagrams of two colloid-polymer mixtures
the h-hB plane; thex and y axes are the volume fractions of th
colloidal particles and blobs, respectively. The curves denote
coexisting densities and the black circles denote the critical po
Both curves are fornB55 blobs. The solid curve is for a goo
solvent b53.9 while the long-dashed curve is for a rather po
solvent,b520. The dotted lines are tie lines, lines connecting t
coexisting phases.
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Thus, within our simple mean-field theory, adding sm
colloidal particles,s!RE , to large polymer molecules in a
good solvent is essentially equivalent to altering, worseni
the solvent quality. As more and more spheres are added
rescaled monomers, the blobs, start to attract each other
so the polymer and spheres demix just as the polymer a
poor solvent demix. If this picture is correct then at leng
scales large in comparison to the blob sizes the polymers
will behave just as a normal polymer in a good, theta,
poor solvent, depending on the concentration of spheres.
behavior of polymers as the solvent quality is worsened
phase separation occurs has been well-studied and is
well understood; see the results of recent computer sim
tions @2–4#. These simulations have found that the mea
field theory prediction ofnB

21/2 scaling of the density of a
polymer at the critical point and the size of the second vir
coefficientB2 are almost correct, there are only logarithm
corrections.

IV. SOLVENT QUALITY

The phase behavior depends on only two parameters
number of blobs of sizes in the polymer,nB , and the ratio
of the blob-sphere to blob-blob excluded volume,b. The
blob-blob excluded volume, 2BB , is needed to convert from
our reduced densities to number densities, but only the r
b5BSB/(2BB) affects the nature of the phase behavior.

First, let us consider polymers in which the excluded v
ume interactions are strong, we are far from the theta te
perature, and the particles are not too small. This is the ‘‘
cellent’’ solvent regime of Odijk@21#. Note that whether or
not a solvent is excellent in this sense depends not only
the properties of the solvent but on the size of the partic
There is a parameter which describes how strong the
cluded volume interactions are@1,32#, it is often denoted by
z. For a single blob we havezB which is @1,32#

zB5
BM

a3
NB

1/2. ~19!

WhenzB!1 then an individual blob is close to being a ra
dom walk, the excluded volume interactions within a sing
blob are negligible. In the other limit,zB@1; the excluded
volume interactions within a single blob are strong.

The zB→` limit is the limit of a large SAW, asNB
→`, zB→`, Eq.~19!. This is the scaling regime of a SAW
which is widely studied and employed, it is the limit i
which RE scales as a power law ofN with the Flory exponent
n which is close to 3/5. Calculations on SAWs@32,33# give
the second virial coefficient between two SAWs with radii
gyration RG as BB55.5RG

3 in the largezB limit. They also
find RE52.5RG , so BB50.35s3 between two SAWs with
mean end-to-end separations ofs. Hankeet al. @12# have
applied field theory to obtain the result thatBSB52.7s3 @34#.
This result is not exact but is more than accurate enough
the purposes of the present theory. This result is obtaine
the scaling limit of strong excluded volume interactions. F
comparison, for ideal polymersBSB53.0s3. A swollen blob

e
s.

r

1-5



th
g

s

es
nd

e

le

d
-

ea

a

lo

e
th
llo
e
q
u

c-
q
e

uf
a

no

the

he

res
s
nt

ol-
oth
the

ty

s at
e
Eq.

s
f

d is

r-

the

t,

er

r

is
for

at

rves,
the

r a

the

RICHARD P. SEAR PHYSICAL REVIEW E66, 051401 ~2002!
is more open than one which is ideal soBSB is correspond-
ingly smaller for polymers with the sameRE . So, with
strong excluded volume interactions even within blobs
ratio b53.9. In this limit the blob-blob interaction is stron
and the chain as a whole will be swollen, so if the radiusRE
of the chain is known, thennB may be estimated fromnB
;(RE /s)5/3. Alternatively, if the number of monomersNB
in a chain withRE5s is known then the number of blob
may be found fromnB5N/NB .

So far we have considered only polymer-colloid mixtur
in which the solvent for the polymer is sufficiently good a
the colloidal particle sufficiently large thatzB@1 and even
pieces of the polymer as small ass are strongly swollen.
Then we can use the value of the blob-blob and blob-sph
second virial coefficients,BB andBSB, in the zB→` limit.
But what if the solvent quality is less good and the partic
not too large? As the solvent quality decreases the monom
monomer interaction,BM decreases from its value in a goo
solvent which is of ordera3. This will decrease the blob
blob interaction, measured byBB , while leaving the blob-
sphere second virial coefficientBSB still at arounds3. The
second virial coefficient for the interaction between an id
chain,RE5s, and a hard sphere, of diameters, is known
exactly@11# and is close to 3s3. Thus, whenzB is no longer
much larger than one, the ratio between the sphere-blob
blob-blob excluded volumes,b, will increase aszB de-
creases. It is divergent for ideal polymers as then the b
blob excluded volume is zero.

We expect that as the solvent quality for the polym
worsens and the polymer-polymer interactions weaken
phase separation will be enhanced, the polymer and co
will be less miscible. With this in mind we return to th
equation for the density of polymer at the critical point, E
~12!. We assume that the critical density will be very low b
make no further assumptions, Eq.~12! then simplifies to

211nB~fcp!21bfcp1bnB~fcp!250, ~20!

which is a quadratic solution with a physical root,

fcp5
211A114~nB /b!~111/b!

2nB~111/b!
. ~21!

For nB /b large, i.e., long polymers with blob-blob intera
tions which are not too weak, this equation simplifies to E
~14!, for very long polymers even weak monomer-monom
and hence blob-blob excluded volume interactions are s
cient to obtain the standard scaling of the critical density
nB

21/2. The other limit in Eq.~21! is whennB /b is small, i.e.,
the blob-blob interactions are weak and the polymer is
too long. In this limit, Eq.~21! simplifies to

fcp5b21, nB /b!1, ~22!

or

hB
cp51/8, nB /b!1. ~23!
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The density of blobs at the critical point is independent of
length of the polymer. Recalling thatf is the number density
of blobs times 2BB , we rewrite Eq.~22! as

rP
cp5

1

nBBSB
; nB /b!1, ~24!

whererP
cp is the number density of polymer molecules at t

critical point, which is of order 1/(nBs3). This scaling has
been derived before for mixtures of colloidal hard sphe
and ideal polymers@24#. Our present theory for polymer
with excluded volume interactions, although rather differe
in a number of ways from the theory of Ref.@24# predicts the
same critical density of a polymer when these excluded v
ume interactions are turned off, giving us confidence in b
theories. We can easily obtain the density of spheres at
critical point in thenB /b!1 limit. The reduced activity is
zC

cp5e/(nBb), from Eq.~13!, and hence the reduced densi
at the critical pointfC

cp51/(nBb) and finally the volume
fraction

hcp5
1

8nB
, nB /b!1, ~25!

which again is the same scaling as found previously@24#. For
weak interactions between the blobs the density of sphere
the demixing critical point is dramatically below its valu
when there are strong interactions between the blobs,
~15!. Also, note that thez parameter for the whole chain i
zP5N1/2BM /a3.nB

1/2BB /s3. We can rewrite this in terms o
b, zP.nB

1/2/b, ignoring a numerical prefactor. WhennB /b
!1, then substituting forb, zP!nB

21/2 and so asnB is
larger than onezP!1, an individual polymer molecule in
dilute solution and before the colloidal spheres are adde
ideal, itsRE5aN1/2. Equations~22!–~25! are for demixing
of a polymer which is effectively ideal, its monome
monomer excluded-volume interactions are negligible.

Returning to Fig. 2, we can compare the densities at
demixing critical point for polymers in a good solvent~solid
and long-dashed curves! with those in a rather poor solven
b520 ~dotted and dot-dashed curves!. We see that as the
solvent quality worsens the volume fraction of polym
blobs increases~compare the solid and dotted curves! and the
volume fraction of spheres decreases~compare the long-
dashed and dot-dashed curves!. Also, for b520 and for not-
too-large nB the density of blobs at the critical point fo
demixing is relatively insensitive tonB , which is what we
expect from Eq.~23!. Note that for the polymer in a good
solvent the effective volume fraction of polymer blobs
lower than that of the spheres at the critical point whereas
a poor solvent,b520, the opposite is true.

In Fig. 4 we have plotted the variation of the densities
the critical point for fixednB and varying solvent qualityb.
For a small polymer,nB53, the volume fractions of blobs
and spheres are plotted as the solid and long-dashed cu
respectively, while the dotted and dot-dashed curves are
volume fractions of blobs and spheres, respectively, fo
much longer polymer,nB530. The mixture of the longer
polymer and the spheres demixes at lower densities than
1-6
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mixture of the shorter polymer and spheres of course, an
the solvent quality decreases the volume fraction of polym
increases while that of the spheres decreases. In Fig. 3
have plotted the phase diagrams in the plane of the two
ume fractions for polymers of lengthnB55 for a good sol-
vent, b53.9 and a rather poor solvent,b520. The coexist-
ence curve for the poorer solvent lies outside that for
good solvent: reducing the solvent quality increases the
tent of the immiscibility.

The larger density of polymer at the critical point com
from the fact that, near their critical points, the third viri
coefficient is relatively much larger for ideal polymers th
for polymers with excluded volume interactions. The valu
of the virial coefficients are obtained by inserting the activ
of colloidal spheres at the critical point,zC

cp , into Eq. ~18!.
For polymers with excluded volume interactions near
critical point B35O(s6). While for ideal polymers nea
their critical pointB35O(s6/nB). Small B3’s lead to high
critical densities, see the Appendix for details.

A. Comparison with computer simulation

Finally in this section, we compare with the results
recent computer simulations of colloidal particles and h
spherical particles by Meijeret al. @35#. They studied colloi-
dal particles1 SAWs with RE /s54.8, 7.0, and 9.9. In the
simulations the size of the colloidal particle not that of t
polymer was varied but for the moment we will assume t
in each casezB@1 so that in the simulations the blob-blo
and blob-sphere interactions are both in the good solv
scaling regime and our parameterb53.9. This leaves us
with the problem of estimating the values of our parame
nB for the simulated systems. For large polymers we m
have thatnB;(RE /s)1/n as nB is extensive in the contou
length of the polymer. In order to obtain an estimate fornB
we set the unknown numerical prefactor in this scaling re
tion to 1, andn50.6, and so obtainnB514, 26, and 46 for
the three simulated systems.

FIG. 4. The variation of the volume fractions of polymer blo
and colloidal spheres at the critical demixing point, as a function
solvent quality, measured byb. The solid and long-dashed curve
are for a polymer of lengthnB53; the solid curve is the volume
fraction of polymer blobs,hB

cp , and the long-dashed curve curve
that of the spheres,hcp. The dotted and dot-dashed curves are fo
polymer of lengthnB530; the dotted curve ishB

cp and the dot-
dashed curve ishcp.
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For these three systems we predict critical points at po
mer blob volume fractionshB

cp50.045, 0.035, and 0.028
respectively. Preliminary simulation results for the critic
densities arerP

cp/rP* 52.04, 3.19, and 4.65, whererP*
51/@(4p/3)RG

3 #. Using the theoretical resultRE52.5RG in
the good solvent regime and converting fromRE /s to nB as
above we have thatrP53.7/nB

1.8. Converting our theoretica
predictions to values of the ratiorP

cp/rP* , we haverP
cp/rP*

50.19, 0.25, and 0.31. The theoretical predictions are ab
an order of magnitude too small, although the trend w
increasingRE /s is correct. Part of the discrepancy ma
come from our crude estimation of the relationship betwe
the size of the polymer,RE /s, and the number of blobs,nB ,
but it seems very likely that the theory is also underpred
ing the density of the polymer when it demixes from t
spheres. Preliminary results for the volume fraction
spheres at the critical demixing point,hcp, are around 0.2–
0.25 whereas we find 0.03–0.05 for this range of values
RE /s. Again the theory overestimates the extent of the i
miscibility. It should be noted that, in simulation, for th
largest value ofRE /s, the colloidal spheres have a diamet
only about ten times that of the monomer. If the blobs are
small to be in the good solvent regime, the requirementzB
@1 will be violated, and our parameterb will be .3.9. Then
the weaker blob-blob interactions in simulation will increa
the polymer density at demixing with respect to that given
the theoretical prediction for the good-solvent scaling
gime. The simple theory derived here is clearly not quant
tive but this is perhaps no surprise, it is really only capable
giving rough estimates and the qualitative nature of tren
The precise nature of the trends forRE /s@1 will be those
for a long polymer in a poor solvent; see the simulati
results of Refs.@2–4#.

B. Solutions of two different polymers

Our semigrand potential for the mixture, Eq.~8!, only
includes the hard-sphere nature of the colloidal parti
through the parameterb: the ratio of the excluded volume o
the particle-blob interaction to that of the blob-blob intera
tion. Thus it is trivial to generalize our theory to describ
mixtures in which the smaller species is something ot
than a hard sphere, providing that the assumptions wh
underly Eq.~8! remain valid. These assumptions are ess
tially that the interaction between the small species and
large polymer is well described by a simple excluded volu
and that the neglect of interactions between the small spe
is reasonable. So, if the hard spheres are replaced by s
polymer molecules with root-mean-square end-to-end
tance s, and strong repulsive interactions with the lar
polymer but not too strong interactions with other sm
polymer molecules, the theory developed here will contin
to apply.

It will apply if the small polymer molecules can be treate
as particles which they can if they are dilute, i.e., at conc
trations below their overlap concentration. Also, the negl
of interactions between small polymer molecules will be
good approximation if the solvent is a near-theta solvent
the small polymer molecules. For such mixtures of small a

f
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large, chemically distinct and incompatible, polymers o
theory can be used to calculate the phase behavior onc
parameterb is known. But even without calculatingb we
know that the scaling of, for example, the critical densi
with the length of the larger polymer will be as described
this and the preceding section. From Fig. 4 we see tha
either the length of the larger polymer is increased, or
excluded volume interactions between blobs of the lar
polymer are decreased~i.e., if the quality of the solvent for
the large polymer is decreased!, the density of the large
polymer at the critical point decreases.

Finally, note that although the functional form of our E
~3! is rather similar to that of a standard Flory-Huggi
theory for a system of polymer plus polymer plus solve
see, for example, Sec. IV 4 of Ref.@1#, our f is a volume
fraction of blobs not a volume fraction of a polymer. W
have rescaled the monomer size, which is appropriate w
both polymers are dilute enough that the correlation lengt
larger than the size of the smaller polymer, and so coils
the smaller polymer do not interpenetrate with the blobs
the larger polymer. Thus in this limit our theory is corre
and a standard Flory-Huggins theory is incorrect because
latter ignores correlations between the monomers. Howe
in the limit where the polymers are compatible enough t
they only demix when the solution is quite concentrat
then the standard Flory-Huggins theory is essentially cor
as the correlations will be screened.

V. CONCLUSION

Mixtures of hard spheres and larger, flexible polyme
which do not absorb onto the surface of the spheres exh
extensive immiscibility. The cross excluded volume intera
tions in these mixtures, i.e., the excluded volume interacti
between the sphere and the polymer, are large. So,
spheres and polymers ‘‘get in each others way’’ so reduc
each others entropy and driving them apart into sepa
phases@5#. The tendency to demix increases as the polym
become larger and larger because the excluded volume i
actions scale linearly with the length of the polymer wh
the translational entropy gained by mixing solutions
spheres and polymers does not vary with polymer leng
Here we derived a simple analytic theory for these mixtu
and found that when the excluded volume interactions w
so strong that even blobs of size equal to that of the sph
were swollen, a mixture of polymer and much smal
spheres behaves much as a polymer in a poor solvent d
By contrast, as we showed in earlier work, a mixture
spheres and ideal polymers behaves rather differently. T
the effective third virial coefficient of the polymer is ver
small, which pushes up the polymer density at the criti
point for demixing.

Our results are of relevance to mixtures of globular p
teins and polymers, as in these mixtures it is easily poss
to have polymers larger than the protein. However, our
sumption of a purely repulsive interaction between the po
mer and the spheres is rather unrealistic for proteins wh
have rather complex surfaces. Some part of this comp
surface may well attract the monomers. A clean compari
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with experiment could be done with experiments on eith
small synthetic colloidal particles or nanoparticles. Anoth
possibility is to instead of making the colloidal particle
smaller, make the polymer bigger by employing DNA@36#.
There, however, the colloidal particles would have to be r
sonably large as the effective monomer length of DNA
about a5100 nm and our theory assumes thata!s. An
objective for future work could be to relax this restriction
account more accurately for mixtures of spheres with se
flexible polymers such as DNA.
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APPENDIX: VIRIAL EXPANSIONS AND CRITICAL
DENSITIES

Here we explore how the critical density varies with t
size of the third virial coefficient. Consider the simplest po
sible virial expansion that has a critical point, an expans
truncated after the third virial coefficient. For the chemic
potentialm as a function of densityr this is

m5 ln r12B2r13B3r2,

whereB2 andB3 are the second and third virial coefficient
respectively. Assuming thatB3 is fixed and thatB2 varies
linearly with some temperature-like variablet, we haveB2
5B(12t), and

m5 ln r12B~12t !r13B3r2.

The critical point occurs when the first and second deri
tives of the chemical potential are zero, giving two equatio
for the critical value oft, tcp, and the critical densityrcp:

1

rcp
12B~12tcp!16B3rcp50,

2
1

~rcp!2
16B350.

The second equation gives the density at the critical po
straightaway,rcp51/A6B3: the critical density does not de
pend on the value of the second virial coefficient but on t
of the third virial coefficient. For our mixtures of ideal poly
mers and spheres, as the polymers are ideal their blob
not repel each other, they only interact with each other
the spheres. Thus the third virial coefficient of the polym
blobs ~at constant sphere chemical potential! is very small
and the density at the critical point of demixing correspon
ingly high.
1-8
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