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Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers
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A simple analytic theory for mixtures of hard spheres and larger polymers with excluded volume interactions
is developed. The mixture is shown to exhibit extensive immiscibility. For large polymers with strong excluded
volume interactions, the density of monomers at the critical point for demixing decreases as one over the
square root of the length of the polymer, while the density of spheres tends to a constant. This is very different
from the behavior of mixtures of hard spheres and ideal polymers, these mixtures, although even less miscible
than those with polymers with excluded volume interactions, have a much higher polymer density at the critical
point of demixing. The theory applies to the complete range of mixtures of spheres with flexible polymers,
from those with strong excluded volume interactions to ideal polymers.
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I. INTRODUCTION and much smaller colloidal spheres will be qualitatively
identical to that of a long polymer and a poor solvent. This
Athermal mixtures are remarkable because the only enphase separation has been extensively studied and is quite
ergy they possess is thermal energy; their behavior includingvell understood 1-4]. The approximate theory we will de-
their phase behavior is determined solely by entropy. But thiselop is essentially a Flory-Huggins polymer-plus-solvent
does not mean that this phase behavior is uninteresting, efree energy with an effective solvent quality which depends
tropy alone can drive phase transitions such as freezing anén the concentration of the colloid. It is known that a Flory-
in mixtures, demixing into coexisting fluid phases. This de-Huggins free energy describes rather well the qualitative fea-
mixing is found almost whenever the two components of theures of the phase separation of a long polymer and a poor
mixture are very different, such as the athermal polymer andolvent; see the comparison with computer simulation data in
hard spheres considered here. We look at mixtures of hargefs.[2—4]. It is also known that purely entropic effects can
spheres and an athermal polymer where the polymer is agsult in the polymer effectively being in a poor solvéh.
large or larger than the spheres: the mean-square end-to-endThe literature on mixtures of colloidal particles and non-
separation of the polymer greater than or equal to the diamadsorbing polymers is extensive because colloid-polymer
eter of the spheres. This complements earlier work on mixmixtures are common, and the limit we consider where all
tures where the polymer is smaller. As might be expected wenteractions are purely repulsive is a rather fundamental limit
find extensive immiscibility between the polymer and theof these mixtures. Mixtures in which the polymer molecules
spheres. We calculate phase boundaries and determine thaie both larger than the particles and flexitds opposed to
scaling with the sizes of the components, for example, thgemiflexiblg are formed when the particles are small, a few
density of monomers at the critical point is found to scale a;m across. Nanoparticles are colloidal particles of this size as
one over the square root of the number of monomers in are proteins. Protein-polymer mixtures are common, for ex-
polymer, just as does the critical point for demixing of aample, polymers are mixed with proteins in order to induce
polymer and a poor solvent. the proteins to crystalliz¢6,7]. Although in practice it is
We are most interested in the limit where the size of theunlikely that the monomer-protein interaction is ever purely
polymer,Rg, is much greater than that of the colloid, R  repulsive over all the surfaces of a protein, however, the limit
is the root-mean-square end-to-end distance of the polymeye study here provides a basis for incorporating the effects
and o is the hard-sphere diameter. Our theory is motivatechf weak adsorption of the polymer onto a protein molecule.
by the idea that foRg> o the effect of the colloids is a small The limit in which all three interactions, sphere-sphere,
length-scale effect in the sense that if the colloid degrees ahonomer-monomer, and sphere-monomer, are purely repul-
freedom of the mixture are integrated out we are left withsive is an important and fundamental limit. It is fundamental
polymers which at length-scales large in comparisorrto in the sense that as we are assuming the monomers to be
behave qualitatively just like a polymer in structureless sol-much smaller than the spheres, then the details of the
vent. The colloids effect the quality of this effective struc- monomer-sphere interaction are irrelevant as long as it is
tureless solvent but do not introduce any new physics omurely repulsive; the details of the monomer-monomer inter-
length-scales large with respect o If this is correct then action only effect the behavior by altering a single parameter,
the long length-scale behavior and the phase behavior adhe monomer-monomer second virial coefficient, and any
colloid-polymer mixtures may be mapped onto the well-sharply repulsive sphere-sphere interaction will behave al-
understood long length-scale and phase behavior of a polynost like hard spheres. Thus many of the details of the mix-
mer plus solvent system. The phase separation of polymeure are irrelevant.
The interactions between colloidal spheres and polymer
molecules have been studied theoretically via a humber of
*Electronic address: r.sear@surrey.ac.uk techniques: scaling approacH@&s-10], field theory[11-14],
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computer simulatioh15,16], integral equation§17,1§, and
other approache$19-22. The phase behavior has been
studied via computer simulatiofi5], scaling theory[23],

and perturbation theorj24,25, where Refs[15,24] are for
ideal polymers. Referendé8] is a review of recent work on
colloid-polymer mixtures, focusing mainly on the structure
and on the results of integral equations, but also discussing
other approaches and the phase behavior. Earlier work by the
author[23] assumed that the phase separation would occur
when the polymer was semidilute. The more careful and bet-
ter founded work here finds that this is not correct, the phase
separation occurs at the boundary between the dilute and
semidilute regimes where the free energy expression as-
sumed in Ref[23] is not valid. Therefore in particular the
findings of Ref.[23] for the polymer density where phase
separation occurs are incorrect and should be discounted.
The opposite limit to that of interest here, i.e., where the
polymer molecules are smaller than the colloidal spheres, has FIG. 1. A schematic of our mixture of large polymer molecules
been considered extensively, see R¢®6-28,15,29 and  and colloidal spheres. The black disks represent the colloids and the
references therein. In this limit the polym@vith or without  curve represents a polymer coil. The rescaled monomers used to
monomer-monomer excluded volume interactioitgluces  estimate the polymer-colloid interaction are drawn as dashed
crystallization of the spheres, there is no equilibrium separacircles.

tion into coexisting fluids.

book of de Gennefgl]. It has already been applied to mix-
tures of ideal large polymers and sphef24], where it was
referred to as the extended Asakura-Oosawa model. We call
Our colloidal particles are modeled by hard spheres ofhe rescaled monomers of sizg blobs. In principle this
diametero and our polymers are modeled by flexible chainsrescaling can be done exactly, i.e., it can be done leaving the
of N monomers, each of length We characterize the inter- free energy etc., exact, but here we view it as part of a
action between a pair of monomers of the polymer with aphysically motivated approximation scheme. See Fig. 1 for a
second virial coefficient for this interactiom®, . We start schematic of our sphere-polymer mixture showing the poly-
with a polymer in a good solvent far from the theta temperaimer composed of a chain of blobs of size If there areNg
ture whereB,,=0O(a®) and the polymer behaves as a self-monomers of size in one blob of sizer thenng is related
avoiding walk(SAW). The interaction between a pair of hard to N by ng=N/Ng. So, relating the number of blobs to the
spheres is similarly characterized by its second virial coeffinumber of monomers requires estimatiNg, we defer this
cientBg=(2/3)ma®. The interaction between a sphere and ato Sec. IV. Until then we specify the polymer size by speci-
monomer is taken to be purely repulsive and short range, ting ng and do not concern ourselves with hoyy is found
monomer cannot overlap with a sphere but otherwise doefr a given polymer. The approximate free energy we will
not interact with it. The polymers do not adsorb onto theobtain depends on the polymer length only throungh
surface of the spheres. The monomer size much smaller Having performed the rescaling we approximate the inter-
than the diameter of the spheres, and here we are consideriagtion between a sphere and a polymer as begmdepen-
particles which are smaller than the polymers so our threglent sphere-blob interactions. This is quite a reasonable ap-
length-scales satisfg<o<Rg. proximation as the blobs and spheres are of the same size.
A mixture of spheres and polymer is difficult to deal with Applying this approximation before rescaling, i.e., approxi-
because of the sphere-polymer interaction. Pure hard spherasting the sphere-polymer interaction Rysphere-monomer
and pure polymers have both been studied extensively anidteraction is qualitatively wrong because the monomers are
the equilibrium behavior of both is well understood. The so much smaller than the sphere so the sphere interacts with
sphere-polymer interaction is hard to deal with because ofmany monomers at a time. We rescaled the monomers just so
the large difference between the size of a sphere and that @fe could apply this simplifying approximation. The blob-
a monomer and because of the connectivity of the polymerdlob and sphere-blob interactions are characterized by their
if the interaction of a sphere and a monomer was indepernsecond virial coefficient8g andBgg, respectively. The sec-
dent of the interaction of the sphere with the next monomepnd virial coefficient for the interaction between a sphere and
along the polymer, then the sphere-polymer interaction coul@ blob is of order that for the interaction between two hard
be estimated easily. However, when the monomers are muapheres of diametes but is a little smaller. We defer its
smaller than the sphere this is very far from being true. Thesstimation to Sec. IV. Returning to our assumption that the
problem of the disparity in sizes can be solved by rescalingnteraction between a polymer and a sphere consists;of
the monomer size from to o, i.e., by viewing the polymer independent blob-sphere interactions, this implies that the
not as being composed &f monomers of size but of ng ~ second virial coefficient for the sphere-polymer interactions
monomers of size. This rescaling is quite common, see theis ngBgg. Finally, we remark that after rescaling, our mix-

II. MODEL AND PHYSICAL PICTURE
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ture of polymers of blobs and spheres resembles the athermahere we have changed theda term to the Ingc term
polymer + solvent mixture considered by Frenkel and Louiswhich we can do as the difference between the two is a
[5]. The phase separation in both cases is driven by unfavoconstant, In(Bg), which has no effect on the phase behavior.

able excluded volume interactions. The quantityb is the ratio between the excluded volumes of
the sphere-blob and blob-blob interactiobs; Bsg/(2Bg).
IIl. ELORY-HUGGINS-TYPE THEORY Apart from a somewhat more complex dependencepn

Eqg. (2) is of the same form as the free energy of EL. of

We start with the basic Flory-Huggins theory for a poly- Ref. [30]. Although in that work the mixture was of a mix-
mer of monomers which interact only via excluded volumeture of thick and thin hard rods and the free energy was
interactions, see, for example, the book of de Gennes, pagesact. Below, we will transform Eq23) following the same
113-115. This is often referred to as an athermal polymeapproach as used in Rdf30]. The free energy Eq(3) is
solution. For our “monomers” we take the blobs not the linear in the density of sphereg.. This makes it easy to
original monomers of length. Thus the “monomer” density  analytically transform from fixeghp and pc to fixed pp and
in the theory is actually the density of blobs which is equal toy,., where uc is the chemical potential of the colloidal
ppNg; pp is the number density of polymer molecules. As spheres. This transformation is useful as then we have a ther-
usual we use a reduced “monomer” density, which we  modynamic potential, called the semigrand potential, which
obtain by multiplying the blob number density by the volume depends on one density variabtg, or ¢, and on one field
one blob excludes to anotherBg, ¢=ppng(2Bg). The  variable,uc. This is completely analogous to the Helmholtz
Flory-Huggins Helmholtz free enerdy then has the usual free energy of a single component system in which tempera-

form ture is important; that free energy also depends on a density
variable (the number densijyand a field variabldthe tem-

F(2Bg) 1) peraturg. As such once we have the semigrand potential cal-

v - n_BIn ¢+(1-¢)In(1-¢), (1) culating phase equilibria is just as easy as for a single com-

ponent system.

which defines the reduced Helmholtz free energy per unit. 89’ at fixedqé and uc the relevant ‘h?".""d.ynam“’ func-
volume f. Throughout, we use units such that the thermafion is the semigrand potentiél. In fact it is slightly more
energykT=1. This is for a polymer solution, no colloidal convenient to work with the activity of the colloidc

spheres present. We add on the contribution of the colloidal exp(uc), nqt the chemipal potential. We need the semi-
spheres using a virial expansion grand potentialQ) which is a Legendre transform of the

Helmholtz free energy

_® i i Q2B
= in gt (1= Hlin(1- ) B0 o=t~ denc, @

+(2B Inpc—1]+p2Bg+ ngBsgl, (2 , . . : .
(2Be){pclinpe=1]+pcBst pcppneBset, (2 which defines the reduced semigrand potential per unit vol-

where we have truncated the expansion after the secor}u aei[i\(;)e[gflg' ;Ohiack?ﬁén ,:ﬁlasl gg:ﬁlr;!ii’tcoféz; the e de-

virial coefficient terms. We have dropped cubic and higher
order terms, which is only valid at low colloid densities. The pe=Inde+ db=Inzc, (5)
last term within the braces is the second virial coefficient

term for the polymer-sphere interaction: within our approxi-\hich can be rearranged to obtain an equation der in
mation it is justng independent sphere-blob excluded vol- tormg ofz.

ume interactions, each with an excluded voluBgg. In

order to obtain a simple analytic theory we will neglect not bo=12cexp(— ¢b). (6)
only all terms for the sphere-polymer interaction beyond the

leading order, second virial coefficient term, but all the termssing Eq.(3) to substitute foff and Eq.(5) to substitute for
from sphere-sphere interactions, including the leading ordej,.  in Eq. (4),

pZBg term shown in Eq(2). This latter approximation is

quite severe but we do this in the expectation that the sphere- b

sphere interactions will not be very large when the colloidal w= n_Bln ¢+ (1= ¢)In(1-¢)—¢c, @)
spheres and polymer demix and that the sphere-sphere inter-

understanding the basic physics of this demixing. and uc so we use Eq(6) to substitute forg.
Making these two approximations and defining a reduced
density of spheregc=pc(2Bg), Eq. (2) becomes ®

W= N@+(1-g)in(1-¢)~zcexp— #b).  (®)
¢

= n_BIn ¢+ (1= $)In(1=¢)+ ¢clln do=1]+ ¢ b, This equation completely describes the thermodynamics of
(3)  the mixture.
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A. The critical point 0.15

We begin the determination of the phase behavior by find-
ing the critical point for demixing. First we need the chemi-

cal potentialu of the polymer, which is just the derivative ot0 Y
of Eq. (8),
n
ng \
,uzn—B—i-nB —1-In(1-¢)+zchexp—@b). (9 0.05 |

Now, the critical point is the point where the first and second
¢ derivatives of the chemical potential are equal to zero. The 0.00 _

derivatives are n
B
f7_:“ _ i+ 1 — zcb? exp — ¢b), (10) FIG. 2 The variation of the_ _volume f_rgctiong of polymer b_Iobs
dp ngop 1l—¢ and colloidal spheres at the critical demixing point, as a function of
polymer lengthng . The solid and long-dashed curves are for poly-
2 1 mer in a good solventy=3.9; the solid curve is the volume frac-
o

tion of polymer blobszg?, and the long-dashed curve is that of the
+2zcb® exp(— ¢b). : i
Zcb™ exp(— ¢b) (11) spheres#°P. The dotted and dot-dashed curves are for a polymer in
a quite poor solventp=20; the dotted curve isg” and the dot-
gashed curve ig)°P.

1 nad? (1)

Setting them to zero results in two simultaneous equation

for the polymer blob density®P and the sphere activitgs’ . . )
at the critical point. Note that we could have obtained the In order to estimate the magnitude of the sphere-sphere

critical point directly from the Helmholtz free energy E) interactions we require the volume fractignof the spheres,

— 3= -y -
but transforming to the semigrand potentialis rather sim- ./ pe(m/6)o”=pc(Bsg/8). Atthe critical point the volume

pler as then we only have one density variable. In contrastf,raCtlon of the spheres is

the Helmholtz free energy depends on two density variables

o . ; ; ; 1 ., 2+Db
and so determining the critical point from it requires analyz- 7P=——| 14 ng 12
ing determinants. Both routes yield the same critical point as 8b B /1+b
Egs.(3) and(8) are exact Legendre transforms of each other
and so yield identical behavior. Combining these two equafor large polymers the volume fractiop of spheres at the

ng>1. (15

tions yields an equation solely in terms ¢fP, critical point is close to 1. For our neglect of the sphere-
sphere interactions to be valigl must be small. We estimate
—(1— ¢°P)2+ ng(pCP)%+ b pP(1— ¢p°P)2 b in the next section and find it to be generally around 4 or

larger, so the volume fraction of spheres at the critical point
is roughly 0.03 or less and our neglect of sphere-sphere in-
teractions is not unreasonable. Having defined the volume
and also one forc” fraction of spheres we can also define an effective volume
fraction of the blobs. If we regard each blob as filling a

+bng(°P)2(1— ¢P)=0, (12

spherical volume of diameter then the “volume fraction”
zZP=p~? o o exp ¢°Pb). (13)  of blobs equalsp(b/8) and so at the critical point we have a
ngd™" 1-¢ blob volume fraction at the critical point
Equation(12) may be solved numerically fo$°P and then ng %

z&P obtained from Eq(13). N’ =———=ng>1. (16)
For largeng the equations simplify and we can solve the _ 8V(1+b) _ o _
equations explicitly. For largeg we look for a solution with In order to illustrate the trends in the demixing behavior

#°P small. Equationg12) and(13) then yield with polymer length, measured hys, we have calculated

[using Egs.(12) and (13)] the volume fractions of spheres
—12 1 and of blobs at the critical demixing poin°P and »gP,
cp:B_, ZP=—(1+ nB—1/22 M), ng>1. respectively. The results are shown in Fig. 2 where the solid
V(1+b) b2 curve is the volume fraction of blobs, and the long-dashed
(14 curve is the sphere volume fraction. For langg, we see
that while the sphere volume fraction is tending towards a
For large polymerspg>1, at the critical point the density of plateau, that of the polymer blobs is continuing to decrease,
polymer blobs scales agl’z while the sphere activity tends which is just what we expect from Eq6L5) and (16). For
to a constant asg increases. The reduced density of sphereghe calculations we have sbt=3.9 which is approximately

¢¢ tends tob ™2 for ng large, from Eqs(6) and (14). its value in thea/c—0, By #0 limit. We will discuss the
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0.35 T Thus, within our simple mean-field theory, adding small
030 | \ colloidal particles,c<Rg, to large polymer molecules in a
\ good solvent is essentially equivalent to altering, worsening,
025 1 the solvent quality. As more and more spheres are added the
020 b\ rescaled monomers, the blobs, start to attract each other and
Mg so the polymer and spheres demix just as the polymer and a
0.15 poor solvent demix. If this picture is correct then at length-
010 scales large in comparison to the blob sizéhe polymers
will behave just as a normal polymer in a good, theta, or
0.05 r poor solvent, depending on the concentration of spheres. The
0.0 behavior of polymers as the solvent quality is worsened and

phase separation occurs has been well-studied and is now
well understood; see the results of recent computer simula-
FIG. 3. The phase diagrams of two colloid-polymer mixtures in 10NS [2—4]. Thes_e .S'mUIat'?/gS ha_Ve found that the mean-
the 5-7g plane; thex andy axes are the volume fractions of the field theory prediction ofg ~“ scaling of the density of a
colloidal particles and blobs, respectively. The curves denote th@olymer at the critical point and the size of the second virial
coexisting densities and the black circles denote the critical pointscoefficientB, are almost correct, there are only logarithmic
Both curves are fong=5 blobs. The solid curve is for a good corrections.
solventb=3.9 while the long-dashed curve is for a rather poor
solvent,b=20. The dotted lines are tie lines, lines connecting two
coexisting phases.

IV. SOLVENT QUALITY

The phase behavior depends on only two parameters: the
estimation ofo and its variation with solvent quality in Sec. number of blobs of size in the polymerng, and the ratio
IV. The phase diagram in the plane of the volume fractions obf the blob-sphere to blob-blob excluded volunie, The
colloidal spheres and blobs, for spheres and polymers withlob-blob excluded volume,B;, is needed to convert from
ng=5 blobs, is plotted in Fig. 3. Note the large region of our reduced densities to number densities, but only the ratio

fluid-fluid coexistence. b=Bgg/(2Bg) affects the nature of the phase behavior.
First, let us consider polymers in which the excluded vol-
B. Virial expansion ume interactions are strong, we are far from the theta tem-

perature, and the particles are not too small. This is the “ex-

cellent” solvent regime of Odij{21]. Note that whether or

not a solvent is excellent in this sense depends not only on

1 the properties of the solvent but on the size of the particles.

w="—In¢—2c— p+zbp+ E(l—zcbz)qs2 There is a parameter which describes how strong the ex-
B cluded volume interactions af&,32], it is often denoted by

{. For a single blob we havé; which is[1,32]

We can expand out our semigrand potential B).as a
virial or density expansion,

1 1 1
- 3430 (1T hA| ahe .
+6(1+Zcb ) +12 1 2zcb )qb +ee

B
(17) gB:a—Z NY2. (19

So, the second, and third B; virial coefficients for the
monomer-monomer interactions in the presence of the colwhen{g<1 then an individual blob is close to being a ran-
loidal spheres are dom walk, the excluded volume interactions within a single
blob are negligible. In the other limigz>1; the excluded
volume interactions within a single blob are strong.
The {g—o0 limit is the limit of a large SAW, asNg
(18 —o, {g—, EQ.(19). This is the scaling regime of a SAW,
which is widely studied and employed, it is the limit in
Using Eq.(14) for the activity of spheres at the critical point which Rg scales as a power law dfwith the Flory exponent
in the above equation for the virial coefficients, we find thaty which is close to 3/5. Calculations on SAW32,33 give
the critical point occurs when the second virial coefficient inthe second virial coefficient between two SAWSs with radii of
the expansions is negative and small, of ortmngl/2 gyration Rg asBg=5.5R in the largeZg limit. They also
~a®ng Y2, whenny is large. This holds foBg of orders®  find Re=2.5Rg, S0 Bg=0.3502 between two SAWSs with
which is correct when the excluded volume interactionsmean end-to-end separations ®f Hankeet al. [12] have
within a blob are strong, see the next section for a discussioapplied field theory to obtain the result tig=2.70" [34].
of this point. The third virial coefficient is of order® at the  This result is not exact but is more than accurate enough for
critical point, again assuming the intrablob excluded volumehe purposes of the present theory. This result is obtained in
interactions are strong. This is just as in the standard Florythe scaling limit of strong excluded volume interactions. For
Huggins free energy for a polymer in a poor solvgh comparison, for ideal polymeBgg=3.00°. A swollen blob

1 2 1 3 2
By=5(1-2cb?)(2Bg),  By=(1+2ch*)(2Bg)”

051401-5



RICHARD P. SEAR PHYSICAL REVIEW B56, 051401 (2002

is more open than one which is ideal Bgg is correspond-  The density of blobs at the critical point is independent of the
ingly smaller for polymers with the samBg. So, with  length of the polymer. Recalling thét is the number density
strong excluded volume interactions even within blobs theof blobs times Bg, we rewrite Eq.(22) as
ratio b=23.9. In this limit the blob-blob interaction is strong
and the chain as a whole will be swollen, so if the radRgs cp_ .
of the chain is known, theng may be estimated fromg Pp NgBsg’
~(Rg /)3, Alternatively, if the number of monomensg
in a chain withRg= o is known then the number of blobs Wherepg’ is the number density of polymer molecules at the
may be found froong=N/Ng. critical point, which is of order 1{zo°). This scaling has

So far we have considered only polymer-colloid mixturesbeen derived before for mixtures of colloidal hard spheres
in which the solvent for the polymer is sufficiently good and @nd ideal polymerg24]. Our present theory for polymers
the colloidal particle sufficiently large thd@g>1 and even With excluded volume interactions, although rather different
pieces of the polymer as small asare strongly swollen. inanumber of ways from the theory of Rg24] predicts the
Then we can use the value of the blob-blob and blob-sphergame critical density of a polymer when these excluded vol-
second virial coefficientsBg andBgg, in the {g— limit. ume interactions are t_urned o_ff, giving us confidence in both
But what if the solvent quality is less good and the particlegheories. We can easily obtain the density of spheres at the
not too large? As the solvent quality decreases the monomeg!itical point in theng/b<1 limit. The reduced activity is
monomer interactionB,, decreases from its value in a good 2¢ =¢€/(ngb), from Eq.(13), and hence the reduced density
solvent which is of ordem®. This will decrease the blob- at the critical point¢c®=1/(ngb) and finally the volume
blob interaction, measured Wy, while leaving the blob- fraction
sphere second virial coefficieBgg still at aroundo®. The
second virial coefficient for the interaction between an ideal ncp:i ne/b<1 (25)
chain,Re=0, and a hard sphere, of diameter is known 8ng’ ° '

B
exactly[11] and is close to 8. Thus, wher/; is no longer

much larger than one, the ratio between the sphere-blob arfinich again is the same scaling as found previol4. For
blob-blob excluded volumesh, will increase as¢g de- weak interactions between the blobs the density of spheres at

creases. It is divergent for ideal polymers as then the blopth® demixing critical point is dramatically below its value
blob excluded volume is zero. when there are strong interactions between the blobs, Eq.

We expect that as the solvent quality for the polymer(15)' Also, note that the parameter for the whole chain is

. . _ N2 3. 112 3 . .
worsens and the polymer-polymer interactions weaken thatp=N Bll\/lzla =ngBg/o”. We can rewrite this in terms of
phase separation will be enhanced, the polymer and colloid: {p=nNg

ng/b<1, (24)

/b, ignoring a numerical prefactor. Whetg /b

will be less miscible. With this in mind we return to the <1, then substituting fob, ¢{p<ng'? and so asng is
equation for the density of polymer at the critical point, Eq.larger than on&p<1, an individual polymer molecule in
(12). We assume that the critical density will be very low but dilute solution and before the colloidal spheres are added is

make no further assumptions, E42) then simplifies to ideal, its Rge=aN2. Equations(22)—(25) are for demixing
of a polymer which is effectively ideal, its monomer-
—1+ng($°P)2+bpP+bng($°P)2=0, (20) monomer excluded-volume interactions are negligible.

Returning to Fig. 2, we can compare the densities at the
demixing critical point for polymers in a good solveisblid
and long-dashed curvewith those in a rather poor solvent,
b=20 (dotted and dot-dashed curye®Ve see that as the
$°P= —1+y1+4(ng/b)(1+1/b) (21) solvent quality worsens the volume fraction of polymer
2ng(1+1/b) ' blobs increase&ompare the solid and dotted curyesd the
volume fraction of spheres decreas@®mpare the long-
For ng/b large, i.e., long polymers with blob-blob interac- dashed and dot-dashed curveSiso, forb=20 and for not-
tions which are not too weak, this equation simplifies to Eqloo-largeng the density of blobs at the critical point for
(14), for very long polymers even weak monomer-monomerdemixing is relatively insensitive tag, which is what we
and hence blob-blob excluded volume interactions are suffiexpect from Eq(23). Note that for the polymer in a good
cient to obtain the standard scaling of the critical density asolvent the effective volume fraction of polymer blobs is
nglfz_ The other limit in Eq(21) is whenng /b is small, i.e., lower than that of the spheres at the critical point whereas for

the blob-blob interactions are weak and the polymer is nof poor solventb=20, the opposite is true.

which is a quadratic solution with a physical root,

too long. In this limit, Eq.(21) simplifies to In Fig. 4 we have plotted the variation of the densities at
the critical point for fixedng and varying solvent qualiti.
#P=b"1, nglb<l (22) For a small polymerng=3, the volume fractions of blobs

and spheres are plotted as the solid and long-dashed curves,
respectively, while the dotted and dot-dashed curves are the
volume fractions of blobs and spheres, respectively, for a
ep much longer polymerng=30. The mixture of the longer
7g =1/8, ng/b<1l. (23)  polymer and the spheres demixes at lower densities than the

or
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0.12 ‘ - - - For these three systems we predict critical points at poly-
mer blob volume fractionsygP=0.045, 0.035, and 0.028,
respectively. Preliminary simulation results for the critical
densities arepf’/pp=2.04, 3.19, and 4.65, wherpg
=1/[(47r/3)R3(’3]. Using the theoretical resuRg=2.5R; in
the good solvent regime and converting fréta/o to ng as
above we have thatp=3.7h%®. Converting our theoretical
predictions to values of the ratior”/ pf , we havepi/ pp
=0.19, 0.25, and 0.31. The theoretical predictions are about
an order of magnitude too small, although the trend with
0.00 5 5 0 15 20 25 increasingRg /o is correct. Part of the discrepancy may
b come from our crude estimation of the relationship between
o . the size of the polymeRg /o, and the number of blobsg,

FIG. 4. The variation of the volume fractions of polymer blobs pt it seems very likely that the theory is also underpredict-
and coIIO|daI_ spheres at the critical de_mlxmg point, as a function ofing the density of the polymer when it demixes from the
solvent quality, measured By The solid and long-dashed curves gpheres  preliminary results for the volume fraction of
?re f.or afpohllmer 0[; 'i“gtc"gf% t:e ls’OI'd_dcurxed's the V°|ume. spheres at the critical demixing point¢P, are around 0.2—
raction of polymer o obszg”, and the long-dashed curve CUNVe IS (y 55\ hareas we find 0.03—0.05 for this range of values of
that of the spheres;°P. The dotted and dot-dashed curves are for a . . -
polymer of lengthng=30; the dotted curve i%g® and the dot- R,;/o.-. _Agaln the theory overestlmate_s th_e exte_nt of the im-
dashed curve is°". miscibility. It should be noted_ that, in simulation, for the

largest value oRg /o, the colloidal spheres have a diameter

mixture of the shorter polymer and spheres of course, and azly about ten times that of the monomer. If the blobs are too
the solvent quality decreases the volume fraction of polymesmall to be in the good solvent regime, the requiremgnt

increases while that of the spheres decreases. In Fig. 3 we 1l will be violated, and our parametemwill be >3.9. Then

have plotted the phase diagrams in the plane of the two volthe weaker blob-blob interactions in simulation will increase
ume fractions for polymers of lengtig=5 for a good sol- the polymer density at demixing with respect to that given by
vent,b=3.9 and a rather poor solverit=20. The coexist- the theoretical prediction for the good-solvent scaling re-
ence curve for the poorer solvent lies outside that for thegime. The simple theory derived here is clearly not quantita-
good solvent: reducing the solvent quality increases the exive but this is perhaps no surprise, it is really only capable of
tent of the immiscibility. giving rough estimates and the qualitative nature of trends.

The larger density of polymer at the critical point comesThe precise nature of the trends f8g/o>1 will be those
from the fact that, near their critical points, the third virial for a long polymer in a poor solvent; see the simulation
coefficient is relatively much larger for ideal polymers thanresults of Refs[2—4].
for polymers with excluded volume interactions. The values
of the virial coefficients are obtained by inserting the activity B. Solutions of two different polymers
of colloidal spheres at the critical poirtg”, into Eq. (18).

For polymers with excluded volume interactions near the, oY semigrand potential for the mixture, E@), only
r polym Wi Xﬁ u volume | ! includes the hard-sphere nature of the colloidal particle
critical point B3=0(0"). While for ideal polymers near

R > 6 , : through the parametdr. the ratio of the excluded volume of
their critical pointB;=0(o"/ng). SmallBy's lead to high 0 2 ricle-blob interaction to that of the blob-blob interac-
critical densities, see the Appendix for details. tion. Thus it is trivial to generalize our theory to describe
mixtures in which the smaller species is something other
than a hard sphere, providing that the assumptions which

Finally in this section, we compare with the results of underly Eq.(8) remain valid. These assumptions are essen-
recent computer simulations of colloidal particles and hardially that the interaction between the small species and the
spherical particles by Meijegt al. [35]. They studied colloi- large polymer is well described by a simple excluded volume
dal particles+ SAWs withRg/0=4.8, 7.0, and 9.9. In the and that the neglect of interactions between the small species
simulations the size of the colloidal particle not that of theis reasonable. So, if the hard spheres are replaced by small
polymer was varied but for the moment we will assume thafpolymer molecules with root-mean-square end-to-end dis-
in each caség>1 so that in the simulations the blob-blob tance o, and strong repulsive interactions with the large
and blob-sphere interactions are both in the good solverolymer but not too strong interactions with other small
scaling regime and our parameter3.9. This leaves us polymer molecules, the theory developed here will continue
with the problem of estimating the values of our parameteto apply.
ng for the simulated systems. For large polymers we must It will apply if the small polymer molecules can be treated
have thatng~ (Rg/0)Y” asng is extensive in the contour as particles which they can if they are dilute, i.e., at concen-
length of the polymer. In order to obtain an estimaterigr  trations below their overlap concentration. Also, the neglect
we set the unknown numerical prefactor in this scaling relaof interactions between small polymer molecules will be a
tion to 1, andr=0.6, and so obtaimg=14, 26, and 46 for good approximation if the solvent is a near-theta solvent for
the three simulated systems. the small polymer molecules. For such mixtures of small and

0.08 |

0.04

A. Comparison with computer simulation
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large, chemically distinct and incompatible, polymers ourwith experiment could be done with experiments on either
theory can be used to calculate the phase behavior once tseall synthetic colloidal particles or nanoparticles. Another
parameter is known. But even without calculatin we possibility is to instead of making the colloidal particles
know that the scaling of, for example, the critical density,Smaller, make the polymer bigger by employing DI\36].
with the length of the larger polymer will be as described inThere, however, the colloidal particles would have to be rea-
this and the preceding section. From Fig. 4 we see that a&onably large as the effective monomer length of DNA is
either the length of the larger polymer is increased, or théPouta=100 nm and our theory assumes tf@a&o. An
excluded volume interactions between blobs of the largePPiective for future work could be to relax this restriction to
polymer are decreasdile., if the quality of the solvent for account more accurately for mixtures of spheres with semi-
the large polymer is decreasedhe density of the larger feXible polymers such as DNA.
polymer at the critical point decreases.

Finally, note that although the functional form of our Eq. ACKNOWLEDGMENT

(3) is rather similar to that of a standard Flory-Huggins i ic 5 pleasure to thank P. Bolhuis, A. Louis, and E. J.
theory for a system of polymer plus polymer plus solvent,saiier for inspiring conversations, and for sending me re-

see, for example, Sec. IV4 of Réfl], our ¢ is a volume ¢ s of their computer simulations, and A. Hanke for provid-
fraction of blobs not a volume fraction of a polymer. We ing me with his calculated value f@sg. | would also like

have rescaled the monomer size, which is appropriate WheR)'ihank D, Frenkel, also for inspiring conversations, and for
both polymers are dilute enough that the correlation Iength i$he invitation to visit AMOLF, where this work was started,
larger than the size of the smaller polymer, and so coils o

the smaller polymer do not interpenetrate with the blobs of

the larger polymer. Thus in this limit our theory is correct ~ APPENDIX: VIRIAL EXPANSIONS AND CRITICAL

and a standard Flory-Huggins theory is incorrect because the DENSITIES

latter ignores correlations between the monomers. However, Here we explore how the critical density varies with the

in the limit where the polymers are compatible enough thak;ze of the third virial coefficient. Consider the simplest pos-
they only demix when the solution is quite concentratedgipje virial expansion that has a critical point, an expansion
then the standard Flory-Huggins theory is essentially correGiyncated after the third virial coefficient. For the chemical
as the correlations will be screened. potential . as a function of density this is

V. CONCLUSION w=Inp+2B,p+3Bgp?,

Mixtures of hard spheres and larger, flexible polymers

which do not absorb onto the surface of the spheres exhibWhereBz andB, are the second and third virial coefficients,

extensive immiscibility. The cross excluded volume interac-r.ESpecuvely' Assuming tha; is fixed and thaiB, varies

tions in these mixtures, i.e., the excluded volume interactiongnearly with some temperature-like variatiewe haveB,
between the sphere and the polymer, are large. So, the B(1-1), and
spheres and polymers “get in each others way” so reducing
each others entropy and driving them apart into separate
phaseg$5]. The tendency to demix increases as the polymer - . ' .
become larger and larger because the excluded volume inteu(t]:s(i)rflt;ﬁil c%c:a”r]r:ico;lcu(;fem?aelnartgiglrrst eil\r/]i?] Stevigned 3:&'(;’:;
actions scale linearly with the length of the polymer whilefor the critical value (?11 1P and the c,rﬁicalgdensit qcp.
the translational entropy gained by mixing solutions of ' ' p
spheres and polymers does not vary with polymer length. 1
Here we derived a simple analytic theory for these mixtures = _+cp cp_
and found that when the excluded volume interactions were CP+ZB(1 ) +6B3p™=0,
so strong that even blobs of size equal to that of the spheres
were swollen, a mixture of polymer and much smaller
spheres behaves much as a polymer in a poor solvent does. _
By contrast, as we showed in earlier work, a mixture of (p°P)?
spheres and ideal polymers behaves rather differently. There
the effective third virial coefficient of the polymer is very The second equation gives the density at the critical point
small, which pushes up the polymer density at the criticaktraightawayp®P=1//6B5: the critical density does not de-
point for demixing. pend on the value of the second virial coefficient but on that
Our results are of relevance to mixtures of globular pro-of the third virial coefficient. For our mixtures of ideal poly-
teins and polymers, as in these mixtures it is easily possibleners and spheres, as the polymers are ideal their blobs do
to have polymers larger than the protein. However, our asnot repel each other, they only interact with each other via
sumption of a purely repulsive interaction between the polythe spheres. Thus the third virial coefficient of the polymer
mer and the spheres is rather unrealistic for proteins whiclblobs (at constant sphere chemical potential very small
have rather complex surfaces. Some part of this compleand the density at the critical point of demixing correspond-
surface may well attract the monomers. A clean comparisoingly high.

w=Inp+2B(1—1t)p+3Bgp?.

+6B5=0.
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